Functional Role of Glutamine 28 and Arginine 39 in Double Stranded RNA Cleavage by Human Pancreatic Ribonuclease
نویسندگان
چکیده
Human pancreatic ribonuclease (HPR), a member of RNase A superfamily, has a high activity on double stranded (ds) RNA. By virtue of this activity HPR appears to be involved in the host-defense against pathogenic viruses. To delineate the mechanism of dsRNA cleavage by HPR, we have investigated the role of glutamine 28 and arginine 39 of HPR in its activity on dsRNA. A non-basic residue glycine 38, earlier shown to be important for dsRNA cleavage by HPR was also included in the study in the context of glutamine 28 and arginine 39. Nine variants of HPR respectively containing Q28A, Q28L, R39A, G38D, Q28A/R39A, Q28L/R39A, Q28A/G38D, R39A/G38D and Q28A/G38D/R39A mutations were generated and functionally characterized. The far-UV CD-spectral analysis revealed all variants, except R39A, to have structures similar to that of HPR. The catalytic activity of all HPR variants on single stranded RNA substrate was similar to that of HPR, whereas on dsRNA, the catalytic efficiency of all single residue variants, except for the Q28L, was significantly reduced. The dsRNA cleavage activity of R39A/G38D and Q28A/G38D/R39A variants was most drastically reduced to 4% of that of HPR. The variants having reduced dsRNA cleavage activity also had reduction in their dsDNA melting activity and thermal stability. Our results indicate that in HPR both glutamine 28 and arginine 39 are important for the cleavage of dsRNA. Although these residues are not directly involved in catalysis, both arginine 39 and glutamine 28 appear to be facilitating a productive substrate-enzyme interaction during the dsRNA cleavage by HPR.
منابع مشابه
Synthetic RNA-cleaving molecules mimicking ribonuclease A active center. Design and cleavage of tRNA transcripts.
RNA cleaving molecules were synthesized by conjugating imidazole residues imitating the essential imidazoles in the active center of pancreatic ribonuclease to an intercalating compound, derivative of phenazine capable of binding to the double stranded regions of polynucleotides. Action of the molecules on tRNA was investigated. It was found, that some of the compounds bearing two imidazole res...
متن کاملCharacterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates
Ribonuclease III cleaves double-stranded (ds) structures in bacterial RNAs and participates in diverse RNA maturation and decay pathways. Essential insight on the RNase III mechanism of dsRNA cleavage has been provided by crystallographic studies of the enzyme from the hyperthermophilic bacterium, Aquifex aeolicus. However, the biochemical properties of A. aeolicus (Aa)-RNase III and the reacti...
متن کاملPurification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA.
RNAs encoding subunits of glutamate-gated ion channel receptors are posttranscriptionally modified by RNA editing and alternative splicing. The change in amino acid sequence caused by RNA editing can affect both the kinetics and the permeability of the ion channel receptors to cations. Here, we report the purification of a 90-kDa double-stranded RNA-specific adenosine deaminase from HeLa cell n...
متن کاملPreferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease.
Protein B23 is an abundant nucleolar protein and a putative ribosome assembly factor which possesses an intrinsic ribonuclease activity. In the current work, the effects of RNA sequence and secondary structure on the cleavage preference by protein B23 were studied. Protein B23 ribonuclease preferentially cleaved the single-stranded homopolymers poly(A), poly(U) and poly(C). However, double-stra...
متن کاملCleavage of dsRNAs hyper-edited by ADARs occurs at preferred editing sites
Long double-stranded RNAs (dsRNAs) may undergo covalent modification (hyper-editing) by adenosine deaminases that act on RNA (ADARs), whereby up to 50-60% of adenosine residues are converted to inosine. Previously, we have described a ribonuclease activity in various cell extracts that specifically targets dsRNAs hyper-edited by ADARs. Such a ribonuclease may play an important role in viral def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011